Abstract
Diclofenac (DCF) is among the most effective non-steroidal anti-inflammatory drugs (NSAIDs) and at the same time one of the most consumed drugs worldwide. Since the ever-increasing use of diclofenac poses serious threats to ecosystems, its substantial removal is crucial. To address this issue, a variety of sorbents have been employed. Herein we present the diclofenac removal properties of two metal organic frameworks, namely [Zr6O4(OH)4(NH2BDC)6]·xH2O (MOR-1) and H16[Zr6O16(H2PATP)4]·xH2O (MOR-2). Batch studies revealed fast sorption kinetics for removal of DCF− from water as well as particularly high selectivity for the drug vs. common competitive species. Moreover, the composite MOR-1-alginic acid material was utilized in a sorption column, displaying remarkable removal efficiency towards DCF− anions. Significantly, this is the first time that column sorption data for removal of NSAIDs using MOF-based materials is reported.
Funder
Hellenic Foundation for Research and Innovation
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献