Effects of Methane Pre-Reforming Percentage and Flow Arrangement on the Distribution of Temperature and Thermal Stress in Solid Oxide Fuel Cell

Author:

Cai Weiqiang,Zheng Qingrong,Yu Wanneng,Yin Zibin,Yuan JinliangORCID,Zhang Zhonggang,Pei Yuyao

Abstract

To obtain detailed information on the temperature field and thermal stress field inside the solid oxide fuel cell (SOFC) fueled with partially pre-reformed methane. A three-dimensional geometric and mathematical model of the SOFC is implemented by using the finite element method in the commercial software COMSOL Multiphysics®. The coupling characteristics were analyzed for electrode chemical reaction, multi-component mass transfer, and heat transfer process under typical operating conditions, which was further applied for predicting and analyzing the thermal stress distribution. After model validation, parametric simulations are conducted to investigate how the methane pre-reforming percentage and flow arrangement affect the temperature and the thermal stress of SOFC. The simulated results show that reducing the methane pre-reforming percentages can decrease the temperature maximum and the variation range of the first principal stress, but will increase the possibility of carbon deposition. The maximum temperature of the counter-flow is about 20 K lower than that of the co-flow, and the first principal stress variation range of the counter-flow is 8.6 Mpa lower than that of the co-flow. The methane pre-reforming percentages have a significant effect on the heat transfer and the thermal stress, and the counter-flow can improve the temperature uniformity and reduce the thermal stress variation range.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Fujian Province

Xiamen Municipal Bureau of Sciences & Technology

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3