Optimization of Blue Photorefractive Properties and Exponential Gain of Photorefraction in Sc-Doped Ru:Fe:LiNbO3 Crystals

Author:

Xu Lei,Chen GuanyingORCID

Abstract

Sc:Ru:Fe:LiNbO3 crystals were grown from congruent melt by using the Czochralski method. A series of LiNbO3 crystals (Li/Nb = 48.6/51.4) with 0.1 wt% RuO2, 0.06 wt% Fe2O3 and various concentrations of Sc203 were prepared. RF1 and RF4 refers to the samples containing 0 mol% Sc203 and 3 mol% Sc203, respectively. The photorefractive properties of RF4 were measured by Kr+ laser (λ = 476 nm blue light): ηs = 75.7%, τw = 11 s, M/# = 19.52, S = 2.85 cmJ−1, Γ = 31.8 cm−1 and ∆nmax = 6.66 × 10−5. The photorefractive properties of five systems (ηs, M/#, S, Γ and ∆nmax) under 476 nm wavelength from RF1 to RF4 continually increased the response time, while τw was continually shortened. Comparing the photorefractive properties of Sc (1 mol%):Ru (0.1 wt%):Fe (0.06 wt%): LiNbO3 measured by Kr+ laser (λ = 476 nm blue light) with Sc (1 mol%):Fe (0.06 wt%):LiNbO3 measured by He-Ne laser (633 nm red light), ηs increased by a factor of 1.9, Vw (response rate) increased by a factor of 13.9, M/# increased by a factor of 1.8 and S increased by a factor of 32. The ∆nmax improved by a factor of 1.4. A strong blue photorefraction was created by the two-center effect and the remarkable characteristic of being in phase between the two gratings recorded in shallow and deep trap centers. The photorefractive properties (ηS, τw, M/#, S, ∆nmax) were increased with an increase in Sc3+ ion concentration. Damage-resistant dopants such as Sc3+ ions were no longer resistant to damage, but they enhanced the photorefractive properties at the 476 nm wavelength. The experimental results clearly show that Sc-doped two-center Ru:Fe:LiNbO3 crystal is a promising candidate blue photorefraction material for volume holographic storage. Sc-doped LiNbO3 crystal can significantly enhance the blue photorefractive properties according to the experimental parameters. Therefore, the Sc:Ru:Fe:LiNbO3 crystal has better photorefractive properties than the Ru:Fe:LiNbO3 crystal.

Funder

2019 Major Scientific and Technological Achievements Transformation Projects of Heilongjiang Province of China

2021 Harbin Science and technology special plan project. Development of 8-inch silicon carbide (SiC) substrate material and equipment and Research on industrialization process

Research and development of PVT 2–4 inch AlN single crystal equipment and key technology

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3