The Rigidity of the (BH4)-Anion Dispersed in Halides AX, A = Na, K; X = Cl, Br, I, and in MBH4 with M = Na, K, Rb, Cs

Author:

Assi Zeina,Schneider Alexander Gareth,Ulpe Anna Christina,Bredow Thomas,Rüscher Claus Henning

Abstract

The B–H bond length of the borohydride anion (BH4−) in alkali metal borohydrides MBH4 with M = Na, K, Rb, Cs, and diluted in different alkali halide matrices, was investigated experimentally by infrared spectroscopy (FTIR) and theoretically using first principles calculations. The peak positions in IR absorption spectra of NaBH4 pressed at 754 MPa in halides NaX and KX with X = Cl, Br, I show significant variations indicating ion exchange effects between the halide and NaBH4. For NaBH4 in NaBr, NaI, KBr and KI pellets, the peak positions indicate that BH4− could be highly diluted in the AX matrix, which renders an isolation of BH4− in AX (i-BH4−). For NaBH4 in NaCl and KCl pellets, a solution of BH4− in AX occurred only after a further thermal treatment up to 450 °C. The observed peak positions are discussed with respect to the lattice parameter (a0), anion to cation ratio (R = rA/rX), standard enthalpy of formation (ΔfH) and ionic character (Ic) of the halides. A linear relation is obtained between ν3(i-BH4−) and the short-range lattice energies of AX. Density functional theory (DFT) calculations at generalized gradient approximation (GGA) level were used to calculate the IR vibrational frequencies ν4, ν3 and ν2 + ν4 for series of compositions Na(BH4)0.25X0.75 with X = Cl, Br, I, and MBH4. The theoretical and experimental results show the same trends, indicating the rigidity of the B–H bond length and the failure of Badger’s rule.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3