Numerical Studies of Batch and Inline High Shear Melt Conditioning Technology Using Different Rotors

Author:

Lebon Gerard Serge BrunoORCID,Patel Jayesh B.ORCID,Fan ZhongyunORCID

Abstract

When casting aluminum alloy billets, high shear melt conditioning (HSMC) technology refines the resulting grain size, reduces the number of defects, and improves mechanical properties without the need to add polluting and expensive chemical grain refiners. These resultant improvements spring from the high shear rates that develop in the rotor–stator gap and the stator holes facing the leading edge of the rotor. Despite the growing literature on rotor–stator mixing, it is unclear how the different rotor–stator parameters affect the performance of high shear treatment. To upscale this technology and apply it to processes that involve large melt volumes, an understanding of the performance of the rotor–stator design is crucial. In this paper, we present the results of computational fluid dynamics (CFD) studies of high shear melt conditioning in continuous and batch modes with different rotor designs. These studies build upon our earlier work by studying the effect of rotor variation in a stator design consisting of rows of small apertures at different rotor speeds spanning from 1000 to 10,000 revolutions per minute. While no clear-cut linear pattern emerges for the rotor performance (as a function of the design parameters), the rotor geometry is found to affect the distributive mixing of microparticles, but it is insignificant with regards to their disintegration.

Funder

Engineering and Physical Sciences Research Council

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3