Abstract
Metamaterials are artificial materials with properties that can be designed by man-made structures. Pentamode metamaterials only support compressional stresses at specific frequency ranges, and a band gap is a frequency range where no stresses are supported. In this paper, an elastic metamaterial with hexagonal unit cells is studied where pentamode bands or band gaps at low frequencies are obtained by varying the inner structures. The effects of structural and geometric parameters on the band width of pentamode bands or band gaps are analyzed. Simulations of materials composed of primitive cells with pentamode or band gap properties are conducted with harmonic stimulation based on the finite element method. The metamaterials can be applied as pentamode metamaterials or vibration isolation materials.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献