Electronic Heat Capacity and Lattice Softening of Partially Deuterated Compounds of κ-(BEDT-TTF)2Cu[N(CN)2]Br

Author:

Matsumura Yuki,Imajo ShusakuORCID,Yamashita Satoshi,Akutsu HirokiORCID,Nakazawa Yasuhiro

Abstract

Thermodynamic investigation by calorimetric measurements of the layered organic superconductors, κ-(BEDT-TTF)2Cu[N(CN)2]Br and its partially deuterated compounds of κ-(d[2,2]-BEDT-TTF)2Cu[N(CN)2]Br and κ-(d[3,3]-BEDT-TTF)2Cu[N(CN)2]Br, performed in a wide temperature range is reported. The latter two compounds were located near the metal–insulator boundary in the dimer-Mott phase diagram. From the comparison of the temperature dependences of their heat capacities, we indicated that lattice heat capacities of the partially deuterated compounds were larger than that of the pristine compound below about 40 K. This feature probably related to the lattice softening was discussed also by the sound velocity measurement, in which the dip-like structures of the Δv/v were observed. We also discussed the variation of the electronic heat capacity under magnetic fields. From the heat capacity data at magnetic fields up to 6 T, we evaluated that the normal-state γ value of the partially deuterated compound, κ-(d[3,3]-BEDT-TTF)2Cu[N(CN)2]Br, was about 3.1 mJ K−2 mol−1. Under the magnetic fields higher than 3.0 T, we observed that the magnetic-field insulating state was induced due to the instability of the mid-gap electronic state peculiar for the two-dimensional dimer-Mott system. Even though the volume fraction was much reduced, the heat capacity of κ-(d[3,3]-BEDT-TTF)2Cu[N(CN)2]Br showed a small hump structure probably related to the strong coupling feature of the superconductivity near the boundary.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3