Effect of Electrolysis Temperature on the Preparation of FeO by Molten Salt Electrolysis

Author:

Jing Zhenwei,Luo Chao,Yan Hongyan,Meng Ju,Li Chenxiao,Li Hui,Liang Jinglong

Abstract

FeO is a low-price material with high charge storage capacity, biocompatibility and other characteristics. It has been applied in the fields of catalysts, capacitors, electrodes and composite materials. However, the current method of preparing FeO needs to control the temperature and reducing atmosphere, which increase the production difficulty and cost. In this experiment, the molten salt electrolysis method was used to prepare FeO by using the NaCl-KCl molten salt system and Fe2O3 and Al2O3 as raw materials, and the influence of temperature on the preparation process was explored. The results showed that the electrolysis process of Fe2O3 to FeO is mainly divided into the following three stages: the electric double-layer charging process, Fe2O3 to Fe3O4 process and Fe3O4 to FeO process. The increase in temperature can improve the reaction speed and strengthen the electrolysis effect. The higher the temperature, the less Fe3O4 and more FeO in the sample. Through analysis, it was found that the increase in temperature will affect the theoretical voltage of the electrolytic reaction in thermodynamics, resulting in the increase in the overall potential provided by the power supply. In terms of kinetics, the increase in temperature will affect the viscosity of molten salt, so that O2− transport has better kinetic conditions.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3