Anatomy of a Discovery: The Twist–Bend Nematic Phase

Author:

Dunmur David

Abstract

New fluid states of matter, now known as liquid crystals, were discovered at the end of the 19th century and still provide strong themes in scientific research. The applications of liquid crystals continue to attract attention, and the most successful so far has been to the technology of flat panel displays; this has diversified in recent years and LCDs no longer dominate the industry. Despite this, there is plenty more to be uncovered in the science of liquid crystals, and as well as new applications, novel types of liquid crystal phases continue to be discovered. The simplest liquid crystal phase is the nematic together with its handed or chiral equivalent, named the cholesteric phase. In the latter, the aligned molecules of the nematic twist about an axis perpendicular to their alignment axis, but in the 1970s a heliconical phase with a tilt angle of less than 90° was predicted. The discovery of this phase nearly 40 years later is described in this paper. Robert Meyer proposed that coupling between a vector order parameter in a nematic and a splay or bend elastic distortion could result in spontaneously splayed or bent structures. Later, Ivan Dozov suggested that new nematic phases with splay–bend or twist–bend structures could be stabilised if the appropriate elastic constants became negative. Theoretical speculation on new nematic phases and the experimental identification of nematic–nematic phase transitions are reviewed in the paper, and the serendipitous discovery in 2010 of the nematic twist–bend phase in 1″,7″-bis(4-cyanobiphenyl-4′-yl)heptane (CB7CB) is described.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3