Abstract
The sol-gel process was used to create a new type of polypyrrole-Stannous(II)tungstate nanocomposite by poly(N-methyl pyrrole (PNMPy) sol in Stannous(II)tungstate gel, produced separately using sodium silicotungstic acid and Tn(II)chloride. Tin(II)tungstate (SnWO3) was made by changing the mixing volume ratios of SnWO3 and with a constant amount of an organic polymer. The composite was characterized by TGA, XRD, FTIR, and SEM measurements. A commercially available glassy carbon electrode (GCE) was modified with PNMPy/nano-Stannous(II)WO3 nanocomposites to create a chemical sensor for selective detection of Hg2+ ions using an effective electrochemical methodology. In the I-V technique, selectively toxic Hg2+ ion was targeted selectively, which shows a rapid reaction toward PNMPy/nano-Stannous(II)WO3/Nafion/GCE sensor. It also demonstrates long-term stability, an ultra-low detection limit, exceptional sensitivity, and excellent reproducibility and repeatability. For 0.1 mM to 1.0 nM aqueous Hg2+ ion solution, a linear calibration plot (r2: 0.9993) was achieved, with a suitable sensitivity value of 2.8241 AM−1 cm−2 and an extraordinarily low detection limit (LOD) of 3.40.1 pM (S/N = 3). As a result, the cationic sensor modified by PNMPy/nano-Stannous(II)WO3/GCE could be a promising electrode.
Funder
deanship of Scientific Research (DSR), at King Abdulaziz University, Jeddah,
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献