Effect of Cooling Rate on Nano-Eutectic Formation in Laser Surface Remelted and Rare Earth Modified Hypereutectic Al-20Si Alloys

Author:

Kayitmazbatir MetinORCID,Lien Huai-Hsun,Mazumder Jyoti,Wang JianORCID,Misra Amit

Abstract

Laser Surface Remelting (LSR) was applied to arc-melted Al-20Si-0.2Sr, Al-20Si-0.2Ce, and Al-20Si hypereutectic alloys to refine microstructures. Experiments revealed that microstructures in the melt pool varied from fully eutectic to a mixture of Al dendrites and inter-dendritic eutectic. We calculated cooling rates using the Eagar-Tsai model and correlated cooling rates with characteristic microstructures, revealing that a cooling rate on the order of 104 K/s could lead to maximized fully eutectic microstructure morphology. Due to rapid solidification, the Si composition in the LSR eutectic was measured at 18.2 wt.%, higher than the equilibrium eutectic composition of 12.6 wt.%Si. Compared to Al-20Si, Ce addition had no significant effect on the volume fraction of the fully eutectic structure but refined Si fibers to approximately 30 nm in diameter. Sr addition did not further refine the diameter of eutectic Si fibers compared to Al-20Si but increased the volume fraction of the fully eutectic microstructure morphology. The refinement ratio (φ) of the Si fiber diameter from the bottom of the melt pool to the surface for the three alloys was similar, at around 28%. The established correlation between the cooling rate and the size and morphology of the microstructure within the melt pool will enable tailoring of the microstructure in laser-processed as well as deposited alloys for high strength and plasticity.

Funder

United States Department of Energy

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3