Crystallization Kinetics of Basalt Glass-Ceramics Produced from Olivine Basalt Rock

Author:

Huo Yonglin,Qin Guilu,Huo Jichuan,Zhang Xingquan,Zhu Yongchang

Abstract

Glass-ceramics acquired from the melting of rocks have a vast application marketplace. In this study, an olivine basalt rock from Zhangjiakou in China was selected as a raw material to prepare basalt glass-ceramics, and the crystallization kinetics of olivine basalt glass was investigated using differential thermal analysis. Polarizing microscope and X-ray diffraction (XRD) analysis results revealed that the main mineral compositions of olivine basalt are plagioclase, pyroxene, olivine, and iron oxide(s). Three crystallization peaks were observed in the DSC curve of the olivine basalt glass. The Avrami exponent (n), apparent activation energies for the crystallization, and glass transition of basalt glass were determined using the Owaza method based on data obtained from isothermal measurements. The crystallization activation energies (E) of the three crystallization peaks of olivine basalt glass were 314.20 kJ/mol, 1232.49 kJ/mol, and 696.89 kJ/mol, respectively. In addition to this, the crystal growth index indicated that the crystallization mode in the olivine basalt glass was surface crystallization. The crystallization phases and microstructure of the olivine basalt glass heated at 860 °C, 1100 °C, and 1180 °C were also studied. The conclusions obtained offer some useful information for the preparation of basalt glass-ceramics from olivine basalt rocks.

Funder

Major Science and Technology Special Project of Advanced Materials in Sichuan Province

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Reference27 articles.

1. Phase separation in glass

2. Introduction to Ceramics;Kinger,2010

3. A review on basalt fibre and its composites

4. Basalts and Phase Diagrams: An Introduction to the Quantitative Use of Phase Diagrams in Igneous Petrology;Morse;J. Geol.,1982

5. Earth: An Introduction to Physical Geology;Tarbuck,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3