Chemical Doping of a Silica Matrix with a New Organic Dye from the Group of Heterocyclic Compounds—Chemical, Optical and Surface Characteristics

Author:

Wojtasik KatarzynaORCID,Zięba MagdalenaORCID,Wojtasik Michał,Tyszkiewicz CumaORCID,Pokladko-Kowar Monika,Gondek Ewa,Danel Andrzej,Karasiński PawełORCID

Abstract

This paper presents the results of research on a luminescent dye bound in a silica matrix. The new developed dye from the group of azaheterocyclic compounds was used: 3-(p-hydroxyphenyl)-1-phenyl-1H-pyrazolo [3,4-b]quinoxaline. The structure and composition of the dye was examined by 1HNMR, 13CNMR, FTIR, and elemental analysis. Its absorption and photoluminescence characteristics were tested in solvents of different polarity in UV-Vis range. The films were prepared by sol–gel method and dip-coating technique. The dye was introduced into a sol in the course of a synthesis of the latter. DLS and FTIR measurements of sols were performed. Optical properties were investigated using UV-Vis spectrophotometry and monochromatic ellipsometry. The surface morphology of the layers was examined by atomic force microscopy. Our investigations showed that the dye bound in the silica matrix does not lose its photoluminescent properties. The emission band at λPL = 550 nm (λex = 365 nm) was recorded for the dye in the matrix. The layers are optically homogeneous with smooth surfaces. Dye doped silica films have RMS surface roughness of 2.17 nm over areas of 2 × 2 μm2. The idea of binding a photoluminescent dye in a silica matrix presented in the paper can be applied in the technology of luminescent solar concentrators.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3