Micromechanical Effect of Martensite Attributes on Forming Limits of Dual-Phase Steels Investigated by Crystal Plasticity-Based Numerical Simulations

Author:

Hussein TarekORCID,Umar MuhammadORCID,Qayyum FaisalORCID,Guk SergeyORCID,Prahl UlrichORCID

Abstract

This study analyses the effect of martensite grain size and its volume fraction in dual-phase (DP) steel on (1) the formability limit, (2) average global behavior under different loading conditions, and (3) damage initiation. The virtual RVEs (Representative Volume Elements) were constructed using DREAM.3D software with a variation of microstructural attributes. The numerical simulations were carried out using DAMASK, which evaluates the polycrystalline material point behavior and solves versatile constitutive equations using a spectral solver. The simulations were post-processed to obtain global and local stress, strain, and damage evolution in constructed RVEs. The global results were processed to obtain FLDs according to Keeler-Brazier (K-B) and Marciniak and Kuczynski (M-K) criteria. In this work, the capability of microstructure-based numerical simulations to analyze the FLDs has been established successfully. From Forming Limit Diagrams (FLDs), it was observed that formability changes by changing the strain hardening coefficients (n-values), the martensite fraction, and martensite grain sizes of DP steels. The improved formability was observed with lower martensite fraction, i.e., 17%, decreased martensite grain size, i.e., 2.6 µm, and higher strain hardening coefficient. The M-K approach shows the better capability to predict the formability by various loading conditions and clarifies the necking marginal zone of FLD. The damage propagation is also strongly affected by the loading conditions. The current study would be a good guide for designers during the manufacturing and selecting of appropriate DP steels based on the service loading conditions.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3