Effects of Microstructural Properties on Damage Evolution and Edge Crack Sensitivity of DP1000 Steels

Author:

Habibi Niloufar,Mathi SanthoshORCID,Beier Thorsten,Könemann MarkusORCID,Münstermann SebastianORCID

Abstract

In the present work, the microstructural damage behavior of two DP1000 steel test subjects through various stress states was studied to thoroughly learn the interaction between microstructure, damage evolution, and edge stretchability. In addition, microstructural changes at the fracture sites and fracture surfaces were observed using a scanning electron microscope. The distinctive mechanical and damage behaviors of the materials were revealed. However, the steels were slightly different in chemical composition, microstructural characteristics, and yield stress. The results showed that when microstructural and mechanical properties of phases were more similar, i.e., the microstructure was more homogenous, the damage was initiated by cracking at ferrite-martensite interfaces, and it propagated along the loading direction. This allowed the material to represent high local formability and significant necking. In contrast, by increasing the dissimilarity between ferrite and martensite phases, damage propagated by the shear linking of the voids hindered local deformation of the material and led it to sudden fracture after negligible necking. These distinct damage evolutions noticeably influenced the materials’ edge stretchability. Since higher local formability favors the edges with higher resistance to cracking, the hole expansion ratio increases, as clearly observed throughout the current study.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3