The Bioactive Mg-Zn-Gd Wire Enhances Musculoskeletal Regeneration: An In Vitro Study

Author:

He XuanORCID,Li YeORCID,Miao Hongwei,Sun Jiang,Ong MichaelORCID,Zu Haiyue,Li WeishiORCID

Abstract

Magnesium (Mg)-based implants were extensively developed and tested to improve the shortages of traditional hard metal implants. Unlike the nail, screw, and plate, pure Mg wire is rarely applied in the musculoskeletal system because of its poor mechanical properties. Therefore, we developed the magnesium–zinc–gadolinium (ZG21) alloy wire, which presented good mechanical properties. Before the in vivo study, the in vitro tests were carried out in this study. The ZG21 wire was scanned by SEM/EDS. The changing rate of weight and pH values were recorded during degradation. The corrosion interface was scanned by SEM/EDS. The cytotoxicity of metal extracts, Mg, Zn, and Gd ions was tested. The osteogenic and angiogenic potential was also evaluated. The ZG21 wire degraded at a stable speed in 14 days. The extracts were diluted ten times, and the correspondent ion concentration presented low cytotoxicity for cell lines of pre-osteoblasts, fibroblasts, and endothelial vessel cells. Pre-osteoblast cell lines cultured with 10% extracts presented significantly higher osteogenic potential. Endothelial vessel cell lines cultured with 2.5, 5, and 10 mM Mg2+ presented significantly higher angiogenic potential. The ZG21 wire could maintain an intact structure when making a surgical knot. Its degradation process and products presented low toxicity and potential for osteogenesis and angiogenesis. The ZG21 wire could be identified as a safe and bioactive material for further in vivo musculoskeletal regeneration.

Funder

theme-based research scheme of Hong Kong Research Grant Council

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3