Description of Dynamic Recrystallization by Means of An Advanced Statistical Multilevel Model: Grain Structure Evolution Analysis

Author:

Trusov PeterORCID,Kondratev NikitaORCID,Podsedertsev Andrej

Abstract

Physical multilevel models of inelastic deformation that take into account the material structure evolution hold promise for the development of functional materials. In this paper, we propose an advanced (modified via analyzing the mutual arrangement of crystallites) statistical multilevel model for studying thermomechanical processing of polycrystals that includes a description of the dynamic recrystallization process. The model is based on the consideration of homogeneous elements (grains, subgrains) aggregated into a representative volume (macropoint) under the Voigt hypothesis. In the framework of this statistical approach, there is no mandatory requirement for continuous filling of the computational domain with crystallites; however, the material grain structure cannot be created arbitrarily. Using the Laguerre polyhedra, we develop a method of grain structure simulation coupled with subsequent processing and transferring of the necessary data on the grain structure to the modified statistical model. Our research is of much current interest due to the fact that the mutual arrangement of crystallites, as well as the interfaces between them, has a significant impact on the properties of polycrystals, which are particularly important for physical mechanisms that provide and accompany the processes of inelastic deformation (recrystallization, grain boundary hardening, grain boundary sliding, etc.). The results of the simulations of the high-temperature deformation of a copper polycrystal, including the description of the recrystallization process, are presented.

Funder

The Ministry of Education and Science of the Russian Federation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3