Abstract
In this work, we report on the hyperfine parameters of the foreign 181Ta probe in the rutile structure of the single crystal TiO2 using the e−γ and γ−γ time differential perturbed angular correlation (TDPAC) technique. We implanted 181Hf ions into a sample of single crystal rutile TiO2 in the Bonn Isotope Separator. The implanted sample was then thermally annealed at a temperature of 873 K for 315 min in a vacuum. The 181Hf radioisotopes decayed by β− emission, followed by a cascade to the ground of γ rays or conversion electrons into a stable state 181Ta. The 181Ta probe substitutes the Ti lattice site with a unique nuclear quadrupole interaction, allowing for the precise measurement of the largest electric field gradient (Vzz) and asymmetry parameter (η). The hyperfine parameters obtained from the e−γ TDPAC spectroscopy agree with those of the γ−γ TDPAC spectroscopy at room temperature, apart from a calibration factor, both from our experiments and the literature. This suggests that the electronic recombination following the internal conversion of the L shell electron takes less time (ps) than the intermediate lifetime of the metastable 181Ta state (ns).
Funder
Federal Ministry of Education and Research
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering