Unveiling the Mechanisms of High-Temperature 1/2[111] Screw Dislocation Glide in Iron–Carbon Alloys

Author:

Katzarov Ivaylo Hristov,Drenchev Ljudmil BorisovORCID

Abstract

We have developed a self-consistent model for predicting the velocity of 1/2[111] screw dislocation in binary iron–carbon alloys gliding by a high-temperature Peierls mechanism. The methodology of modelling includes: (i) Kinetic Monte-Carlo (kMC) simulation of carbon segregation in the dislocation core and determination the total carbon occupancy of the core binding sites; (ii) Determination of kink-pair formation enthalpy of a screw dislocation in iron—carbon alloy; (iii) KMC simulation of carbon drag and determination of maximal dislocation velocity at which the atmosphere of carbon atoms can follow a moving screw dislocation; (iv) Self consistent calculation of the average velocity of screw dislocation in binary iron–carbon alloys gliding by a high-temperature kink-pair mechanism under a constant strain rate. We conduct a quantitative analysis of the conditions of stress and temperature at which screw dislocation glide in iron–carbon alloy is accomplished by a high-temperature kink-pair mechanism. We estimate the dislocation velocity at which the screw dislocation breaks away from the carbon cloud and thermally-activated smooth dislocation propagation is interrupted by sporadic bursts of dislocation activity.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mechanism of Solid-Solution Hardening: Quasi-Localization of Dislocation Kinks;Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques;2023-10

2. Mechanism of Solid Solution Hardening: Quasilocalisation of Dislocation Kinks;Поверхность. Рентгеновские, синхротронные и нейтронные исследования;2023-09-01

3. Molecular Dynamics Simulation Study on the Influence of the Abrasive Flow Process on the Cutting of Iron-Carbon Alloys (α-Fe);Micromachines;2023-03-22

4. Crystal Plasticity (Volume II);Crystals;2022-09-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3