Microstructures and Mechanical Properties of Ductile Cast Iron with Different Crystallizer Inner Diameters

Author:

Bai Jiaojiao,Xu Haifeng,Wang YuhuiORCID,Chen Xingpin,Zhang Xiaodan,Cao Wenquan,Xu Yang

Abstract

Five types of ductile cast irons (DCIs) were fabricated by crystallizers with different inner diameters, as well as five different austempered ductile cast irons (ADIs) after the same isothermal quenching process. The effects of amount, diameter, and morphology of graphite on the mechanical properties of DCI and ADI and the effect of the original as-cast microstructure on the microstructure after austempering were studied. The microstructures were characterized by optical microscopy, scanning electron microscopy, and X-ray diffraction. Their mechanical properties were examined by tensile, U-shaped impact, and hardness tests. As the diameter of the crystallizer increases from 60 mm to 150 mm, the diameter of the nodular graphite increases from ~10 to ~50 μm, and the nodularity rate decreases from 100 to 70%. The average ultimate tensile strength increases from ~500 MPa in the as-cast state to 1100 MPa in the austempered state and the hardness increases from ~180 HB to 400 HB. The elongation in cast state decreases from 11 to 4.6% and the elongation in ADI state decreases from 7 to 4.5%. Through the research in this paper, it can be seen that ADIs with different matrix microstructures can be obtained from different original as-cast microstructures through the same isothermal quenching process, and different casting crystallizers can be selected according to different performance requirements, which can reduce the nitrite pollution and reduce cost.

Funder

Central Iron and Steel Research Institute independently invested in a special research and development fund

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities of China

VILLUM FONDEN

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3