Biosynthesis of Ag Nanoparticles Using Caralluma acutangula Extract and Its Catalytic Functionality towards Degradation of Hazardous Dye Pollutants

Author:

Alamier Waleed M.ORCID,Hasan NazimORCID,Ali Syed Kashif,Oteef Mohammed D. Y.

Abstract

Nanomaterials, today, are an integral part of our everyday lives, industrial processes and appliances. Biosynthesis, because of its environmental sustainability, is now becoming a hot topic. The biosynthesis of nanomaterials using plant phytochemicals enhances the nanomaterial’s biocompatibility and its compatibility with the environment too. Hence, forthe first time, this study uses Caralluma acutangula (CA) plant extracts to synthesize silver nanoparticles (CA-AgNPs) and characterize them using UV–visible spectroscopy, FTIR, Raman spectroscopy, XRD, TEM, TGA, SEM, EDX, zeta potential, and bandgap analysis. The particle size distributions of CA-AgNPs were observed to fall in the range of 2–6 nm predominantly using TEM images. High crystallinity % was calculated as 86.01 using XRD data. Extracted phytochemicals from CA were characterized and analyzed using GC-MS. The bandgap (Eg) of CA-AgNPs was calculated as 3.01 eV and zeta potential was found to be −16.1 mV. The biosynthesized CA-AgNPs were confirmed for their degradation efficiency of two toxic water pollutant dyes: Congo red, CR (95.24% degradation within 36 min), and methylene blue, MB (96.72% degradation within 32 min), in the presence of NaBH4. Different doses of CA-AgNPs and NaBH4 were checked for their chemical kinetics and rate constant analysis. The chemical kinetics were explored on the basis of integrated rate law model equations and confirmed as pseudo-zero-order reactionsfor CR and MB dyes. The rate constant ‘k’ for CR and MB was calculated as 0.0311 and 0.0431 mol.L−1.min−1, respectively.

Funder

DSR, Jazan University

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3