Abstract
Nanomaterials, today, are an integral part of our everyday lives, industrial processes and appliances. Biosynthesis, because of its environmental sustainability, is now becoming a hot topic. The biosynthesis of nanomaterials using plant phytochemicals enhances the nanomaterial’s biocompatibility and its compatibility with the environment too. Hence, forthe first time, this study uses Caralluma acutangula (CA) plant extracts to synthesize silver nanoparticles (CA-AgNPs) and characterize them using UV–visible spectroscopy, FTIR, Raman spectroscopy, XRD, TEM, TGA, SEM, EDX, zeta potential, and bandgap analysis. The particle size distributions of CA-AgNPs were observed to fall in the range of 2–6 nm predominantly using TEM images. High crystallinity % was calculated as 86.01 using XRD data. Extracted phytochemicals from CA were characterized and analyzed using GC-MS. The bandgap (Eg) of CA-AgNPs was calculated as 3.01 eV and zeta potential was found to be −16.1 mV. The biosynthesized CA-AgNPs were confirmed for their degradation efficiency of two toxic water pollutant dyes: Congo red, CR (95.24% degradation within 36 min), and methylene blue, MB (96.72% degradation within 32 min), in the presence of NaBH4. Different doses of CA-AgNPs and NaBH4 were checked for their chemical kinetics and rate constant analysis. The chemical kinetics were explored on the basis of integrated rate law model equations and confirmed as pseudo-zero-order reactionsfor CR and MB dyes. The rate constant ‘k’ for CR and MB was calculated as 0.0311 and 0.0431 mol.L−1.min−1, respectively.
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献