Low-Vacuum Pyrolysis of YBCO Films by Using Fluorine-Free Metal Organic Chemical Deposition

Author:

Yang ZhaoORCID,Cai Chuanbing,Chu Ningdong,Tong Shuyun,Lu Yuming,Liu Zhiyong

Abstract

The preparation of YBCO superconducting films by using metal organic chemical deposition (MOD) involves low-temperature pyrolysis and high-temperature treatment. The former process generally requires the introduction of water vapor and other gases. The study on pyrolysis in a low vacuum environment and non-carrier gas atmosphere has never been reported. In this work, we explored a low vacuum pyrolysis scheme with simple Argon gas decompression and a carrier-free atmosphere. The effects of heating rate on the microstructure of pyrolysis films were investigated, and the high-temperature treatment temperature (Th) was also optimized. Compared with conventional pyrolysis, the present low-vacuum pyrolysis does not employ the flowing dry or wet gases, facilitating the internal gas release during film decomposition. More importantly, the efficiency was greatly improved with reduced pyrolysis time. The obtained film surface is free of CuO particle, which leads to a lower roughness. We also investigated the effect of Th on the final YBCO film texture and superconductivity. As Th increased from 810 °C to 815 °C, the BaCuO2 phase decreased with enhanced c-axis orientation being evident by XRD and Raman spectra. As a result, the critical current density (Jc) increased from 0.38 MA/cm2 to 1.2 MA/cm2 (77 K, self-field).

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3