Abstract
Metal-oxygen bonding of the Ce-doped LaCoO3 system remains largely unexplored despite extensive studies on its magnetic properties. Here, we investigate the structure and local structure of nanoscale La1−xCexCoO3, with x = 0, 0.2, and 0.4, using the Rietveld refinement and synchrotron X-ray absorption techniques, complemented by topological analysis of experimental electron density and electron energy distribution. The Rietveld refinement results show that LaCoO3 subject to Ce addition is best interpretable by a model of cubic symmetry in contrast to the pristine LaCoO3, conventionally described by either a monoclinic model or a rhombohedral model. Ce4+/Co2+ are more evidently compatible dopants than Ce3+ for insertion into the main lattice. X-ray absorption data evidence the partially filled La 5d-band of the pristine LaCoO3 in accordance with the presence of La–O bonds with the shared-type atomic interaction. With increasing x, the increased Ce spectroscopic valence and enhanced La–O ionic bonding are noticeable. Characterization of the local structures around Co species also provides evidence to support the findings of the Rietveld refinement analysis.
Funder
National Science Council of Taiwan
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献