Splitting Opaque, Brittle Materials with Dual-Sided Thermal Stress Using Thermal-Controlled Fracture Method by Microwave

Author:

Cheng Xiaoliang,He Zongyang,Wang Hailong,Wang Yang

Abstract

The thermal-controlled fracture method has been increasingly focused upon in the high-quality splitting of advanced brittle materials due to its excellent characteristics related to the fact that it does not remove material. For opaque, brittle materials, their poor fracture quality and low machining capacity resulting from their single-sided heat mode is a bottleneck problem at present. This work proposed the use of dual-sided thermal stress induced by microwave to split opaque, brittle materials. The experimental results indicate that the machining capacity of this method is more than twice that of the single-sided heat mode, and the fracture quality in splitting opaque, brittle materials was significantly improved by dual-sided thermal stress. A microwave cutting experiment was carried out to investigate the distribution characteristic of fracture quality by using different workpiece thicknesses and processing parameters. A dual-sided thermal stress cutting model was established to calculate the temperature field and thermal stress field and was used to simulate the crack propagation behaviors. The accuracy of the simulation model was verified using temperature measurement experiments. The improvement mechanism of the machining capacity and fracture quality of this method was revealed using the fracture mechanics theory based on calculation results from a simulation. This study provides an innovative and feasible method for cutting opaque, brittle materials with promising fracture quality and machining capacity for industrial application.

Funder

Key Project of Natural Science of Anhui Provincial Department of Education

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3