Deposit Formation in a Coal-Fired Rotary Kiln for Fluxed Iron Ore Pellet Production: Effect of MgO Content

Author:

Guo Yufeng,Liu Kuo,Wang ShuaiORCID,Chen FengORCID,Yang Zhuang,Yang Lingzhi,Li Dongyue

Abstract

During the roasting process of fluxed pellets in a coal-fired rotary kiln, the incomplete combustion of pulverized coal injection accelerates deposit formation, which further limits the production efficiency of fluxed pellets. In order to eliminate the above problem, this study investigated the influence of MgO on deposit formation mechanism. The thermodynamic analysis revealed that MgO could increase the melting temperature of silicates in fluxed pellets with 0.8–1.2 basicity (CaO/SiO2) when roasted at 1200–1250 °C, thereby decreasing the amount of liquid phase that formed initial deposits. XRD and SEM analyses of deposit simulants demonstrated that the addition of MgO was conducive to form magnesium magnetite and ferri-diopside, thereby avoiding the formation of hedenbergite with lower melting temperature. Moreover, the softening-melting performance and adhesivity tests confirmed that MgO had a positive effect on reducing liquid-phase deposition and inhibiting the adhesion of deposits on refractory bricks below 1250 °C. The above studies indicated that the addition of MgO helped to slow down the deposit formation of fluxed pellets prepared by coal-fired rotary kiln.

Funder

National Natural Science Foundation of China

Shanxi Province Major Science and Technology projects

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3