Study of Thermal Compression Constitutive Relation for 5182-Sc-Zr Alloy Based on Arrhenius-Type and ANN Model

Author:

Li Jingxiao,Yang Xiaofang,Zhu Yulong,Zhang Yongfa,Qiu Youcai,Sanders Robert Edward

Abstract

Hot compression experiments were performed on alloy 5182 with small additions of Sc and Zr. The 5182 alloy containing Sc and Zr is critical for expanding the 5182 alloy’s range of applications, and a thorough understanding of its thermal processing behavior is of great importance to avoid processing defects. Alloy microstructure, including grain structures and Al3(ScxZr1−x) dispersoids were analyzed by EBSD and TEM. Stable flow stresses were observed below a strain rate of 1 s−1 for the Sc-Zr containing alloy. The results of constitutive models, with and without strain−compensation, and artificial neural network (ANN) were used to compare to the experimental results. The Al3(ScxZr1−x) dispersoid data was introduced into the ANN model as a nonlinear influence factor. Addition of the Al3(ScxZr1−x) dispersoid information as input data improved the accuracy and practicality of the artificial neural network in predicting the deformation behavior of the alloy. The squared correlation coefficients of ANN prediction data reached 0.99.

Funder

Ministry of Education and the State Administration of Foreign Experts Affairs of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3