Evolution of Cos–Gaussian Beams in the Periodic Potential Optical Lattice

Author:

Wen Bing,Deng Yangbao,Wei Jiamou,Chen Depeng,Leng Xiaoling

Abstract

The evolution of Cos−Gaussian beams in periodic potential optical lattices is theoretically and numerically investigated. By theoretical analysis, a breathing soliton solution of the Gross–Pitaevskii equation with periodic potential is obtained, and the period of the breathing soliton is solved. In addition, the evolution of Cos−Gaussian beams in periodic potential optical lattices is numerically simulated. It is found that breathing solitons generate by appropriately choosing initial medium and beam parameters. Firstly, the effects of the initial parameters of Cos−Gaussian beams (initial phase and width) on its initial waveform and the propagation characteristics of breathing soliton are discussed in detail. Then, the influence of the initial parameters (modulation intensity and modulation frequency) of a photonic lattice on the propagation characteristics of breathing solitons is investigated. Finally, the effects of modulation intensity and modulation frequency on the width and period of the breathing soliton are analyzed. The results show that the number of breathing solitons is manipulated by controlling the initial parameters of Cos−Gaussian beams. The period and width of a breathing soliton are controlled by manipulating the initial parameters of a periodic photonic lattice. The results provide some theoretical basis for the generation and manipulation of breathing solitons.

Funder

Bing Wen

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Reference30 articles.

1. Nonspreading wave packets

2. Light beats the spread: “non-diffracting” beams

3. Linear and nonlinear light bullets: Recent theoretical and experimental studies;Mihalache;Rom. J. Phys.,2012

4. Discrete Solitons and Breathers with Dilute Bose-Einstein Condensates

5. Discrete breathers

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3