Affiliation:
1. Department of Electrical and Computer Engineering, Tarbiat Modares University (TMU), Tehran 1411713116, Iran
2. Department of Engineering Physics, Polytechnique Montréal, Montréal, QC H3C 3A7, Canada
3. School of Electrical and Electronic Engineering, University of Adelaide, Adelaide 5001, Australia
Abstract
In laser science and industry, considerable effort is directed toward designing fibers for fiber laser and fiber amplifier applications, each of which offers a particular advantage over the others. Evanescently coupled multicore fibers, however, have been studied less extensively due to the relatively small mode area in the single-mode regime. Here, by proposing a new structure with stress-applying parts in a 37-core fiber and optimizing this structure through a comprehensive framework, we present 21 solutions characterized by large-mode-area and high beam quality in the single-mode, single-polarization regime. Different fiber designs are optimal for different output parameters. In one design, the mode area can significantly increase to above 880 μm2, which is comparable with that of photonic-crystal fibers. Moreover, besides the single-mode operation, the beam quality factor (M2 factor) of the fundamental mode is considered an output parameter in the bent state and is improved up to 1.05 in another design. A comprehensive tolerance analysis is then performed to assess the performance of the designs under deviations from normal conditions. Moreover, in spite of the shifts in the loss of modes, the proposed high beam quality LMA fibers maintain single-polarization, single-mode operation across a wide range of core pitches, bending orientation angles, and bending radius deviations. Our results highlight the potential of multicore fibers for the efficient operation of fiber lasers and amplifiers.
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献