Mechanism Analysis of Discharge Energy in the Electrostatic-Field-Induced Electrolyte Jet Micro-EDM

Author:

Zhang Yaou12,Yang Xiangjun12,Gao Qiang12ORCID,Wang Jian12,Zhao Wansheng12

Affiliation:

1. State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China

2. School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Abstract

The discharge energy determines the machining resolution, minimum processable feature size, and surface roughness, which makes it a hot research topic in the microelectrical discharge machining (EDM) field. In this paper, a kind of novel discharge-energy-generation method in micro-EDM is investigated. In this method, the opposite induced charges on the electrolyte jet and workpiece serve as the source of the discharge energy. The operating mechanism of this discharge energy is revealed by analyzing the equivalent discharge circuit. The unique discharge current and voltage between the electrolyte jet and the workpiece are sampled and investigated. In contrast with the pulsating energy in conventional EDM, this study shows that the direct current (DC) voltage source can automatically generate a continuously periodical pulsating discharge in the electrostatic-field-induced electrolyte jet (E-Jet) EDM process. After further analyzing the electric signals in a single discharge process, it can be found that the interelectrode voltage experienced a continuous sharp electric breakdown, a nearly unchanging process, and a fast exponential recharging process. The discharge frequency increases as the electrolyte concentration and interelectrode voltage increase but decreases as the interelectrode distance increases. The discharge energy per pulse increases with the increasing interelectrode distance and electrolyte concentration but with the decreasing interelectrode voltage. Finally, the electrostatic-field-induced discharge-energy generation and change mechanisms are revealed, which provides a feasible method for micro-EDM with continuous tiny pulsed energy only using the DC power supply.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3