Multivariable Iterative Learning Control Design for Precision Control of Flexible Feed Drives

Author:

Wang Yulin12ORCID,Hsiao Tesheng1ORCID

Affiliation:

1. Institute of Electrical and Control Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan

2. School of Mechanical Engineering, Guangdong Ocean University, Zhanjiang 524088, China

Abstract

Advancements in machining technology demand higher speeds and precision, necessitating improved control systems in equipment like CNC machine tools. Due to lead errors, structural vibrations, and thermal deformation, commercial CNC controllers commonly use rotary encoders in the motor side to close the position loop, aiming to prevent insufficient stability and premature wear and damage of components. This paper introduces a multivariable iterative learning control (MILC) method tailored for flexible feed drive systems, focusing on enhancing dynamic positioning accuracy. The MILC employs error data from both the motor and table sides, enhancing precision by injecting compensation commands into both the reference trajectory and control command through a norm-optimization process. This method effectively mitigates conflicts between feedback control (FBC) and traditional iterative learning control (ILC) in flexible structures, achieving smaller tracking errors in the table side. The performance and efficacy of the MILC system are experimentally validated on an industrial biaxial CNC machine tool, demonstrating its potential for precision control in modern machining equipment.

Publisher

MDPI AG

Reference38 articles.

1. Iterative learning control for trajectory tracking of robot manipulators;Hsiao;Int. J. Autom. Smart Technol.,2017

2. Fast-Update Iterative Learning Control for Performance Enhancement with Application to Motion Systems;Wang;IEEE Access,2022

3. Synchronized material deposition rate control with path velocity on fused filament fabrication machines;Ertay;Addit. Manuf.,2018

4. Data-Driven Iterative Feedforward Tuning for a Wafer Stage: A High-Order Approach Based on Instrumental Variables;Song;IEEE Trans. Ind. Electron.,2019

5. Accurate control of ball screw drives using pole-placement vibration damping and a novel trajectory prefilter;Gordon;Precis Eng.,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3