Hybrid Vibration Sensor for Equipment Monitoring and Diagnostics

Author:

Bryakin Ivan V.1,Bochkarev Igor V.2ORCID,Khramshin Vadim R.3ORCID,Gasiyarov Vadim R.4ORCID

Affiliation:

1. Laboratory of Information and Measuring Systems, National Academy of Sciences of the Kyrgyz Republic, Bishkek 720010, Kyrgyzstan

2. Department of Electromechanics, Kyrgyz State Technical University Named after I. Razzakov, Bishkek 720010, Kyrgyzstan

3. Power Engineering and Automated Systems Institute, Nosov Magnitogorsk State Technical University, 455000 Magnitogorsk, Russia

4. Department of Automation and Control, Moscow Polytechnic University, 107023 Moscow, Russia

Abstract

Vibration diagnostics based on vibroacoustic signal data belong to the most common ways to monitor the technical condition of equipment and technical structures. The paper considers the general issues of vibration-based diagnostics and shows that in general, it is required to monitor both axial and torsional oscillations, as well as the inclination angle, occurring during the operation of various technical objects. To comprehensively monitor these parameters, a hybrid vibration sensor is proposed, simultaneously implementing three operating modes: recording linear displacements of the vibrating object; recording the rotation angle of the object at its torsional oscillations; recording the object angular deviation from the vertical component of the natural local geomagnetic field, i.e., the inclinometer mode. The proposed hybrid sensor design is described, and a theoretical analysis of the sensor’s operation in each of the aforementioned operating modes is performed. The authors show that in the inclinometer mode the sensor actually operates as a fluxgate meter. Generalizing the results of the sensor’s operation simultaneously in all three operating modes, an equation for the total output data signal has been obtained, which allows for obtaining the required information on the current values of linear displacements and rotation and inclination angles by selectively filtering it with respective three filters tuned to specific frequencies. The experimental studies of the proposed hybrid vibration sensor confirmed its ability to record various vibrational disturbances and changes in the inclination angle of the monitored object.

Funder

Moscow Polytechnic University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3