Three-Dimensional Segmentation of Equine Paranasal Sinuses in Multidetector Computed Tomography Datasets: Preliminary Morphometric Assessment Assisted with Clustering Analysis

Author:

Borowska Marta1ORCID,Lipowicz Paweł1ORCID,Daunoravičienė Kristina2ORCID,Turek Bernard3,Jasiński Tomasz3ORCID,Pauk Jolanta1ORCID,Domino Małgorzata3ORCID

Affiliation:

1. Institute of Biomedical Engineering, Faculty of Mechanical Engineering, Białystok University of Technology, 15–351 Bialystok, Poland

2. Department of Biomechanical Engineering, Vilnius Gediminas Technical University, 03224 Vilnius, Lithuania

3. Department of Large Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02–787 Warsaw, Poland

Abstract

The paranasal sinuses, a bilaterally symmetrical system of eight air-filled cavities, represent one of the most complex parts of the equine body. This study aimed to extract morphometric measures from computed tomography (CT) images of the equine head and to implement a clustering analysis for the computer-aided identification of age-related variations. Heads of 18 cadaver horses, aged 2–25 years, were CT-imaged and segmented to extract their volume, surface area, and relative density from the frontal sinus (FS), dorsal conchal sinus (DCS), ventral conchal sinus (VCS), rostral maxillary sinus (RMS), caudal maxillary sinus (CMS), sphenoid sinus (SS), palatine sinus (PS), and middle conchal sinus (MCS). Data were grouped into young, middle-aged, and old horse groups and clustered using the K-means clustering algorithm. Morphometric measurements varied according to the sinus position and age of the horses but not the body side. The volume and surface area of the VCS, RMS, and CMS increased with the age of the horses. With accuracy values of 0.72 for RMS, 0.67 for CMS, and 0.31 for VCS, the possibility of the age-related clustering of CT-based 3D images of equine paranasal sinuses was confirmed for RMS and CMS but disproved for VCS.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3