The Therapeutic Potential of Four Main Compounds of Zanthoxylum nitidum (Roxb.) DC: A Comprehensive Study on Biological Processes, Anti-Inflammatory Effects, and Myocardial Toxicity

Author:

Li Xiaohan1,Wang Qi2,Liu Ling1,Shi Yang1,Hong Yang1,Xu Wanqing1,Xu Henghui1,Feng Jing1,Xie Minzhen2,Li Yang3,Yang Baofeng145,Zhang Yong146ORCID

Affiliation:

1. Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China

2. Department of Medicinal Chemistry and Natural Medicinal Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, China

3. Department of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Harbin 150081, China

4. Research Unit of Noninfectious Chronic Diseases in Frigid Zone, Chinese Academy of Medical Sciences, 2019 Research Unit 070, Harbin 150081, China

5. Department of Pharmacology and Therapeutics, Melbourne School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences University of Melbourne, Melbourne 3010, Australia

6. Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Harbin 150086, China

Abstract

Zanthoxylum nitidum (Roxb.) DC. (Z. nitidum) is a traditional Chinese medicinal plant that is indigenous to the southern regions of China. Previous research has provided evidence of the significant anti-inflammatory, antibacterial, and anticancer properties exhibited by Z. nitidum. The potential therapeutic effects and cardiac toxicity of Z. nitidum remain uncertain. The aim of this research was to investigate the potential therapeutic properties of the four main compounds of Z. nitidum in cardiovascular diseases, their impact on the electrical activity of cardiomyocytes, and the underlying mechanism of their anti-inflammatory effects. We selected the four compounds from Z. nitidum with a high concentration and specific biological activity: nitidine chloride (NC), chelerythrine chloride (CHE), magnoflorine chloride (MAG), and hesperidin (HE). A proteomic analysis was conducted on the myocardial tissues of beagle dogs following the administration of NC to investigate the role of NC in vivo and the associated biological processes. A bioinformatic analysis was used to predict the in vivo biological processes that MAG, CHE, and HE were involved in. Molecular docking was used to simulate the binding between compounds and their targets. The effect of the compounds on ion channels in cardiomyocytes was evaluated through a patch clamp experiment. Organ-on-a-chip (OOC) technology was developed to mimic the physiological conditions of the heart in vivo. Proteomic and bioinformatic analyses demonstrated that the four compounds of Z. nitidum are extensively involved in various cardiovascular-related biological pathways. The findings from the patch clamp experiments indicate that NC, CHE, MAG, and HE elicit a distinct activation or inhibition of the IK1 and ICa-L in cardiomyocytes. Finally, the anti-inflammatory effects of the compounds on cardiomyocytes were verified using OOC technology. NC, CHE, MAG, and HE demonstrate anti-inflammatory effects through their specific interactions with prostaglandin-endoperoxide synthase 2 (PTGS2) and significantly influence ion channels in cardiomyocytes. Our study provides a foundation for utilizing NC, CHE, MAG, and HE in the treatment of cardiovascular diseases.

Funder

National Key R&D Program of China

National Natural Science Foundation of Heilongjiang Province-Outstanding Youth Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3