Spherical Silver Nanoparticles Located on Reduced Graphene Oxide Nanocomposites as Sensitive Electrochemical Sensors for Detection of L-Cysteine

Author:

Hua Fei12,Yao Tiancheng3,Yao Youzhi12ORCID

Affiliation:

1. School of Materials Engineering, Wuhu Institute of Technology, Wuhu 241003, China

2. College of Ecology and Environment, Anhui Normal University, Wuhu 241003, China

3. College of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China

Abstract

A new, simple, and effective one-step reduction method was applied to prepare a nanocomposite with spherical polycrystalline silver nanoparticles attached to the surface of reduced graphene oxide (Ag@rGO) at room temperature. Equipment such as X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FTIR) was used to characterize the morphology and composition of the Ag@rGO nanocomposite. A novel electrochemical sensor for detecting L-cysteine was proposed based on fixing Ag@rGO onto a glassy carbon electrode. The electrocatalytic behavior of the sensor was studied via cyclic voltammetry and amperometry. The results indicate that due to the synergistic effect of graphene with a large surface area, abundant active sites, and silver nanoparticles with good conductivity and high catalytic activity, Ag@rGO nanocomposites exhibit significant electrocatalytic activity toward L-cysteine. Under optimal conditions, the constructed Ag@rGO electrochemical sensor has a wide detection range of 0.1–470 μM for L-cysteine, low detection limit of 0.057 μM, and high sensitivity of 215.36 nA M−1 cm−2. In addition, the modified electrode exhibits good anti-interference, reproducibility, and stability.

Funder

Synthesis of novel composites based on two-dimensional graphene and its catalytic degradation of organic pollutants under visible light conditions

Research on Collaborative Control of Nitrogen Oxides, Volatile Organic Compounds, and Greenhouse Gases in Wuhu City under Carbon Target

“Dual Carbon” and Energy Storage Technology Innovation Team

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3