Investigation of Fast-Charging and Degradation Processes in 3D Silicon–Graphite Anodes

Author:

Zheng YijingORCID,Yin Danni,Seifert Hans Jürgen,Pfleging WilhelmORCID

Abstract

The 3D battery concept applied on silicon–graphite electrodes (Si/C) has revealed a significant improvement of battery performances, including high-rate capability, cycle stability, and cell lifetime. 3D architectures provide free spaces for volume expansion as well as additional lithium diffusion pathways into the electrodes. Therefore, the cell degradation induced by the volume change of silicon as active material can be significantly reduced, and the high-rate capability can be achieved. In order to better understand the impact of 3D electrode architectures on rate capability and degradation process of the thick film silicon–graphite electrodes, we applied laser-induced breakdown spectroscopy (LIBS). A calibration curve was established that enables the quantitative determination of the elemental concentrations in the electrodes. The structured silicon–graphite electrode, which was lithiated by 1C, revealed a homogeneous lithium distribution within the entire electrode. In contrast, a lithium concentration gradient was observed on the unstructured electrode. The lithium concentration was reduced gradually from the top to the button of the electrode, which indicated an inhibited diffusion kinetic at high C-rates. In addition, the LIBS applied on a model electrode with micropillars revealed that the lithium-ions principally diffused along the contour of laser-generated structures into the electrodes at elevated C-rates. The rate capability and electrochemical degradation observed in lithium-ion cells can be correlated to lithium concentration profiles in the electrodes measured by LIBS.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3