Bi-Functional Paraffin@Polyaniline/TiO2/PCN-222(Fe) Microcapsules for Solar Thermal Energy Storage and CO2 Photoreduction

Author:

Sun Wenchang,Hou Yueming,Zhang XuORCID

Abstract

A novel type of bi-functional microencapsulated phase change material (MEPCM) microcapsules with thermal energy storage (TES) and carbon dioxide (CO2) photoreduction was designed and fabricated. The polyaniline (PANI)/titanium dioxide (TiO2)/PCN-222(Fe) hybrid shell encloses phase change material (PCM) paraffin by the facile and environment-friendly Pickering emulsion polymerization, in which TiO2 and PCN-222(Fe) nanoparticles (NPs) were used as Pickering stabilizer. Furthermore, a ternary heterojunction of PANI/(TiO2)/PCN-222(Fe) was constructed due to the tight contact of the three components on the hybrid shell. The results indicate that the maximum enthalpy of MEPCMs is 174.7 J·g−1 with encapsulation efficiency of 77.2%, and the thermal properties, chemical composition, and morphological structure were well maintained after 500 high–low temperature cycles test. Besides, the MEPCM was employed to reduce CO2 into carbon monoxide (CO) and methane (CH4) under natural light irradiation. The CO evolution rate reached up to 45.16 μmol g−1 h−1 because of the suitable band gap and efficient charge migration efficiency, which is 5.4, 11, and 62 times higher than pure PCN-222(Fe), PANI, and TiO2, respectively. Moreover, the CO evolution rate decayed inapparently after five CO2 photoreduction cycles. The as-prepared bi-functional MEPCM as the temperature regulating building materials and air purification medium will stimulate a potential application.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hebei Province

Hebei Key Research and Development Program

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3