Abstract
A guided−wave long−range surface plasmon resonance (GW−LRSPR) sensor was proposed in this investigation. In the proposed sensor, high−refractive−index (RI) dielectric films (i.e., CH3NH3PbBr3 perovskite, silicon) served as the guided−wave (GW) layer, which was combined with the long−range surface plasmon resonance (LRSPR) structure to form the GW−LRSPR sensing structure. The theoretical results based on the transfer matrix method (TMM) demonstrated that the LRSPR signal was enhanced by the additional high#x2212;RI GW layer, which was called the GW−LRSPR signal. The achieved GW−LRSPR signal had a strong ability to perceive the analyte. By optimizing the low− and high−RI dielectrics in the GW−LRSPR sensing structure, we obtained the highest sensitivity (S) of 1340.4 RIU−1 based on a CH3NH3PbBr3 GW layer, and the corresponding figure of merit (FOM) was 8.16 × 104 RIU−1 deg−1. Compared with the conventional LRSPR sensor (S = 688.9 RIU−1), the sensitivity of this new type of sensor was improved by nearly 94%.
Funder
National Key R&D Program of China
National Natural Science Foundation of China
Postdoctoral Research Foundation of China
Science and Technology Planning Project of Shenzhen Municipality
Subject
General Materials Science,General Chemical Engineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献