Fluorescent Probes for STED Optical Nanoscopy

Author:

Jeong Sejoo,Widengren Jerker,Lee Jong-ChanORCID

Abstract

Progress in developing fluorescent probes, such as fluorescent proteins, organic dyes, and fluorescent nanoparticles, is inseparable from the advancement in optical fluorescence microscopy. Super-resolution microscopy, or optical nanoscopy, overcame the far-field optical resolution limit, known as Abbe’s diffraction limit, by taking advantage of the photophysical properties of fluorescent probes. Therefore, fluorescent probes for super-resolution microscopy should meet the new requirements in the probes’ photophysical and photochemical properties. STED optical nanoscopy achieves super-resolution by depleting excited fluorophores at the periphery of an excitation laser beam using a depletion beam with a hollow core. An ideal fluorescent probe for STED nanoscopy must meet specific photophysical and photochemical properties, including high photostability, depletability at the depletion wavelength, low adverse excitability, and biocompatibility. This review introduces the requirements of fluorescent probes for STED nanoscopy and discusses the recent progress in the development of fluorescent probes, such as fluorescent proteins, organic dyes, and fluorescent nanoparticles, for the STED nanoscopy. The strengths and the limitations of the fluorescent probes are analyzed in detail.

Funder

National Research Foundation of Korea

Swedish Foundation for International Cooperation in Research and Higher Education

DGIST R&D Program of the Ministry of Science and ICT of Korea

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3