Evaluation of NASA’s GEDI Lidar Observations for Estimating Biomass in Temperate and Tropical Forests

Author:

Sun Mei,Cui Lei,Park Jongmin,García MarianoORCID,Zhou YuyuORCID,Silva Carlos AlbertoORCID,He Long,Zhang HuORCID,Zhao Kaiguang

Abstract

Accurate estimation of forest aboveground biomass (AGB) is vital for informing ecosystem and carbon management. The Global Ecosystem Dynamics Investigation (GEDI) instrument—a new-generation spaceborne lidar system from NASA—provides the first global coverage of high-resolution 3D altimetry data aimed specifically for mapping Earth’s forests, but its performance is yet to be tested for large parts of the world. Here, our goal is to evaluate the accuracies of GEDI in measuring terrain, forest vertical structures, and AGB in reference to independent airborne lidar data over temperate and tropical forests in North America. We compared GEDI-derived elevations and canopy heights (e.g., relative height percentiles such as RH50 and RH100) with those from the Shuttle Radar Topography Mission (SRTM) or from two airborne lidar systems: the Laser Vegetation Imaging Sensor (LVIS) and Goddard’s Lidar, Hyperspectral and Thermal system (G-LiHT). We also estimated GEDI’s geolocation errors by matching GEDI waveforms and G-LiHT pseudo-waveforms. We assessed the predictive power of GEDI metrics in estimating AGB using Random Forests regression. Results showed that GEDI-derived ground elevations correlated strongly those from LVIS, G-LiHT, and LVIS (R2 > 0.91), but with nonnegligible RMSEs of 5.7 m (G-LiHT), 3.1 m (LVIS), and 10.9 m (SRTM). GEDI canopy heights had poorer correlation with LVIS (e.g., R2 = 0.44 for RH100) than with G-LiHT (e.g., R2 = 0.60 for RH100). The estimated horizontal geolocation errors of GEDI footprints averaged 6.5 meters, comparable to the nominal accuracy of 9 m. Correction for the locational errors improved the correlation of GEDI vs G-LiHT canopy heights significantly, on average by 53% (e.g., R2 from 0.57 to 0.82 for RH50). GEDI canopy metrics were useful for predicting AGB (R2 = 0.82 and RMSE = 19.1 Mg/Ha), with the maximum canopy height RH100 being the most useful predictor. Our results highlight the importance of accommodating or correcting for GEDI geolocation errors for estimating forest characteristics and provide empirical evidence on the utility of GEDI for monitoring global biomass dynamics from space.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Forestry

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3