LungVision: X-ray Imagery Classification for On-Edge Diagnosis Applications

Author:

Aldamani Raghad1,Abuhani Diaa Addeen1ORCID,Shanableh Tamer1ORCID

Affiliation:

1. Computer Science and Engineering Department, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates

Abstract

This study presents a comprehensive analysis of utilizing TensorFlow Lite on mobile phones for the on-edge medical diagnosis of lung diseases. This paper focuses on the technical deployment of various deep learning architectures to classify nine respiratory system diseases using X-ray imagery. We propose a simple deep learning architecture that experiments with six different convolutional neural networks. Various quantization techniques are employed to convert the classification models into TensorFlow Lite, including post-classification quantization with floating point 16 bit representation, integer quantization with representative data, and quantization-aware training. This results in a total of 18 models suitable for on-edge deployment for the classification of lung diseases. We then examine the generated models in terms of model size reduction, accuracy, and inference time. Our findings indicate that the quantization-aware training approach demonstrates superior optimization results, achieving an average model size reduction of 75.59%. Among many CNNs, MobileNetV2 exhibited the highest performance-to-size ratio, with an average accuracy loss of 4.1% across all models using the quantization-aware training approach. In terms of inference time, TensorFlow Lite with integer quantization emerged as the most efficient technique, with an average improvement of 1.4 s over other conversion approaches. Our best model, which used EfficientNetB2, achieved an F1-Score of approximately 98.58%, surpassing state-of-the-art performance on the X-ray lung diseases dataset in terms of accuracy, specificity, and sensitivity. The model experienced an F1 loss of around 1% using quantization-aware optimization. The study culminated in the development of a consumer-ready app, with TensorFlow Lite models tailored to mobile devices.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3