Adsorption of Carbon Dioxide, Methane, and Nitrogen on Zn(dcpa) Metal-Organic Framework

Author:

Ribeiro Rui P. P. L.ORCID,Esteves Isabel A. A. C.ORCID,Mota José P. B.

Abstract

Adsorption-based processes using metal-organic frameworks (MOFs) are a promising option for carbon dioxide (CO2) capture from flue gases and biogas upgrading to biomethane. Here, the adsorption of CO2, methane (CH4), and nitrogen (N2) on Zn(dcpa) MOF (dcpa (2,6-dichlorophenylacetate)) is reported. The characterization of the MOF by powder X-ray diffraction (PXRD), thermogravimetric analysis (TGA), and N2 physisorption at 77 K shows that it is stable up to 650 K, and confirms previous observations suggesting framework flexibility upon exposure to guest molecules. The adsorption equilibrium isotherms of the pure components (CO2, CH4, and N2), measured at 273–323 K, and up to 35 bar, are Langmuirian, except for that of CO2 at 273 K, which exhibits a stepwise shape with hysteresis. The latter is accurately interpreted in terms of the osmotic thermodynamic theory, with further refinement by assuming that the free energy difference between the two metastable structures of Zn(dcpa) is a normally distributed variable due to the existence of different crystal sizes and defects in a real sample. The ideal selectivities of the equimolar mixtures of CO2/N2 and CO2/CH4 at 1 bar and 303 K are 12.8 and 2.9, respectively, which are large enough for Zn(dcpa) to be usable in pressure swing adsorption.

Funder

Fundação para a Ciência e a Tecnologia

ERANet LAC

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3