Highly Photoactive Polythiophenes Obtained by Electrochemical Synthesis from Bipyridine-Containing Terthiophenes

Author:

Sordello Fabrizio,Minero ClaudioORCID,Viscardi Guido,Quagliotto Pierluigi

Abstract

According to numerous previous reports, a Z-scheme with two photon absorbers is the most promising strategy to achieve artificial photosynthesis, but in addition to two efficient catalysts — one for oxygen evolution, the other for CO2 reduction — two different and complementary semiconducting sensitizers are required. Here we present the synthesis of two bipyridine-functionalized terthiophenes, which can be electropolymerized to give photoactive p-type semiconductors the capability to perform as photocathode in photoelectrochemical cells for water photosplitting or artificial photosynthesis. Indeed the bipyridine moiety in their structure allows the binding of transition metal carbonyl complexes employed in CO2 reduction, and their band-gap is suitable for the coupling with wide band-gap semiconductors, which have already found application as photoanodes. Finally, they are characterized by photogenerated charge carrier density between 1.1 and 1.4 × 1019 cm−3, with first-order recombination constant of 0.7–1.8 × 10−2 s−1. These figures are of the same order of magnitude of their inorganic counterparts and would therefore guarantee photoconductivity of the device and the activation of the organometallic catalysts with which they should be coupled to function as photocathodes for CO2 reduction.

Funder

Compagnia di San Paolo

Università degli Studi di Torino

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference55 articles.

1. The Future of Energy Supply: Challenges and Opportunities

2. Direct utilization of geothermal energy 2015 worldwide review

3. A review on global solar energy policy

4. Pathways for solar photovoltaics

5. Global Wind Report-Annual Market Updatehttps://windeurope.org/about-wind/statistics/global/global-wind-report-2011/

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3