Triple Bottom Line Analysis and Optimum Sizing of Renewable Energy Using Improved Hybrid Optimization Employing the Genetic Algorithm: A Case Study from India

Author:

Saiprasad Nithya,Kalam AkhtarORCID,Zayegh Aladin

Abstract

Techno-economic, social, and environmental factors influence a large part of society, predominantly in developing countries. Due to energy poverty and bloating populations, developing countries like India are striving to meet the energy balance. One initiative of India to achieve the country’s Renewable Energy Target (RET) is the setting up of the National Solar Mission (NSM) to meet a target of 175 GW (non-hydro) by the year 2022. Prioritizing Renewable Energy (RE) utilization to achieve techno-economic balance is India’s primary objective and creating a positive environmental impact is a bonus. In this study, various scenarios are explored by investigating the techno-economic and environmental impact on RE adoption for a small community in India by optimally sizing the Hybrid Renewable Energy System (HRES). This study is an exemplar in understanding and exploring RE utilization, whilst examining the recent RE market in depth and exploring the advantages and disadvantages of the current RE situation by initiating it in a smaller community. Improved Hybrid Optimization using Genetic Algorithm (iHOGA) PRO+ software, (Version 2.4 -Pro+ , Created by Dr Rodolfo Dufo López, University Zaragoza (Spain)) is used to size the RE systems. The results are categorized using triple bottom line analysis (TBL analysis) and for different scenarios, the techno-economic, environmental, and social merits are weighed upon. The probable hurdles that India has to surpass to achieve easy RE adoption are also discussed in this work. The influential merits for analyzing the TBL for a real-time scenario are Net Present Cost (NPC), Carbon-di-oxide (CO2) emissions, and job criteria. Compared to Hybrid Optimization of Multiple Energy Resources (HOMER) software, iHOGA remains less explored in the literature, specifically for the grid-connected systems. The current study provides a feasibility analysis of grid-connected RE systems for the desired location. iHOGA software simulated 15 sets of results for different values of loads considered and various acquisition costs of HRES. At least 70% of RE can be penetrated for the Aralvaimozhi community with the lowest value of NPC of the HRES. From the TBL analysis conducted, integrating HRES into a micro-grid for the community would result in mitigating CO2 emissions and provide job opportunities to the local community; although, the economic impact should be minimized if the acquisition costs of the HRES are reduced, as has been established through this study.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3