Influence of Cement Kiln Dust on Long-Term Mechanical Behavior and Microstructure of High-Performance Concrete

Author:

Smarzewski Piotr1ORCID,Błaszczyk Krystian2

Affiliation:

1. Faculty of Civil Engineering and Geodesy, Military University of Technology, 2 Gen. Sylwestra Kaliskiego, 00-908 Warsaw, Poland

2. Candidate for Doctoral School, Military University of Technology, 2 Gen. Sylwestra Kaliskiego, 00-908 Warsaw, Poland

Abstract

Cement production in the world market is steadily increasing. In 2000, it was 1600 million tons, while as of 2013, the annual amount exceeded 4000 million tons. The burning of cement clinker is associated with the generation of waste. It is estimated that the amount of cement kiln dust (CKD), during combustion, reaches about 15–20%, which means 700 million tons per year. However, not all types of by-products are reusable due to high alkali, sulfate, and chloride contents, which can adversely affect the environment. One environmentally friendly solution may be to use CKD in the production of high-performance concrete (HPC), as a substitute for some of the cement. This paper presents a study of the short- and long-term physical and mechanical properties of HPC with 5%, 10%, 15%, and 20% CKD additives. The experiments determined density, water absorption, porosity, splitting tensile strength, compressive strength, modulus of elasticity, ultrasonic pulse velocity, and evaluated the microstructure of the concrete. The addition of CKD up to 10% caused an increase in the 28- and 730-day compressive strengths, while the values decreased slightly when CKD concentration increased to 20%. Splitting tensile strength decreased proportionally with 5–20% amounts of CKD regardless of HPC age. Porosity, absorbability, and ultrasonic pulse velocity decreased with increasing cement dust, while the bulk density increased for HPC with CKD. Microstructure analyses showed a decrease in the content of calcium silicate hydrate (C–S–H), acceleration of setting, and formation of wider microcracks with an increase in CKD. From the results, it was shown that a 15% percentage addition of CKD can effectively replace cement in the production of HPC and contribute to reducing the amount of by-product from the burning of cement clinker.

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3