Biomimetic Use of Food-Waste Sources of Calcium Carbonate and Phosphate for Sustainable Materials—A Review

Author:

Piras Sara1,Salathia Saniya2ORCID,Guzzini Alessandro1,Zovi Andrea2ORCID,Jackson Stefan2ORCID,Smirnov Aleksei2ORCID,Fragassa Cristiano3ORCID,Santulli Carlo4

Affiliation:

1. School of Science and Technology, Chemistry Section, Università di Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy

2. School of Pharmacy, Università di Camerino, Via Sant’Agostino 1, 62032 Camerino, Italy

3. Department of Industrial Engineering, Alma Mater Studiorum Università di Bologna, 40133 Bologna, Italy

4. School of Science and Technology, Geology Section, Università di Camerino, Via Gentile III da Varano 7, 62032 Camerino, Italy

Abstract

Natural and renewable sources of calcium carbonate (CaCO3), also referred to as “biogenic” sources, are being increasingly investigated, as they are generated from a number of waste sources, in particular those from the food industry. The first and obvious application of biogenic calcium carbonate is in the production of cement, where CaCO3 represents the raw material for clinker. Overtime, other more added-value applications have been developed in the filling and modification of the properties of polymer composites, or in the development of biomaterials, where it is possible to transform calcium carbonate into calcium phosphate for the substitution of natural hydroxyapatite. In the majority of cases, the biological structure that is used for obtaining calcium carbonate is reduced to a powder, in which instance the granulometry distribution and the shape of the fragments represent a factor capable of influencing the effect of addition. As a result of this consideration, a number of studies also reflect on the specific characteristics of the different sources of the calcium carbonate obtained, while also referring to the species-dependent biological self-assembly process, which can be defined as a more “biomimetic” approach. In particular, a number of case studies are investigated in more depth, more specifically those involving snail shells, clam shells, mussel shells, oyster shells, eggshells, and cuttlefish bones.

Funder

Ministry of Foreign Affairs and International Cooperation of Italy

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3