Cyclic Fatigue of Different Reciprocating Endodontic Instruments Using Matching Artificial Root Canals at Body Temperature In Vitro

Author:

Bürklein Sebastian1ORCID,Maßmann Paul1ORCID,Schäfer Edgar1ORCID,Donnermeyer David2ORCID

Affiliation:

1. Central Interdisciplinary Ambulance in the School of Dentistry, University of Münster, 48149 Münster, Germany

2. Department of Periodontology and Operative Dentistry, University of Münster, 48149 Münster, Germany

Abstract

Reciprocating motion expands the lifetime of endodontic instruments during the preparation of severely curved root canals. This study aimed to investigate the time to fracture (TTF) and number of cycles to failure (NCF) of different reciprocating instruments (n = 20 in each group) at body temperature using a dynamic testing model (amplitude = 3 mm). Reciproc Blue (RPB), size 25/.08, WaveOne Gold (WOG) 25/.07, Procodile (Proc) 25/.06, R-Motion (RM_06) 25/.06 and R-Motion (RM_04) 30/.04 instruments were tested in their specific reciprocating motion in artificial matching root canals (size of the instrument ± 0.02 mm; angle of curvature 60°, radius 5.0 mm, and centre of curvature 5.0 mm from apical endpoint). The number of fractured instruments, TTF, NCF, the and lengths of the fractured instruments were recorded and statistically analysed using the Chi-Square or Kruskal–Wallis test. Both TTF (median 720, 643, 562, 406, 254 s) and the NCF (3600, 3215, 2810, 2032, 1482 cycles) decreased in the following order RM_06 > RPB > RM_04 > Proc > WOG with partially significant differences. During testing, only six RM_06 instruments fractured, whereas 16/20 (RPB), 18/20 (Proc), and 20/20 (RM_04, WOG) fractures were recorded (p < 0.05). Within the limitations of the present study, blue-coloured RPB and RM instruments exhibited a significantly superior cyclic fatigue resistance compared to SE-NiTi and Gold-wire instruments. Heat treatment, cross-sectional design and core mass significantly influenced the longevity of reciprocating instruments in cyclic dynamic testing.

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3