Realization of Large Low-Stress Elastocaloric Effect in TiZrNbAl Alloy

Author:

Lv Bang-He1,Xiang Hua-You1,Gao Shang1,Guo Yan-Xin1,Yang Jin-Han1,Zou Nai-Fu2,Zhao Xiaoli1,Li Zongbin1,Yang Bo1ORCID,Jia Nan1,Yan Hai-Le1ORCID,Zuo Liang1ORCID

Affiliation:

1. Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Material Science and Engineering, Northeastern University, Shenyang 110819, China

2. Institute of Materials Science and Engineering, Shenyang Aerospace University, Shenyang 110136, China

Abstract

Seeking novel high-performance elastocaloric materials with low critical stress plays a crucial role in advancing the development of elastocaloric refrigeration technology. Here, as a first attempt, the elastocaloric effect of TiZrNbAl shape memory alloy at both room temperature and finite temperatures ranging from 245 K to 405 K, is studied systematically. Composition optimization shows that Ti-19Zr-14Nb-1Al (at.%), possessing excellent room-temperature superelasticity with a critical stress of around 100 MPa and a small stress hysteresis of around 70 MPa and outstanding fracture resistance with a compressive strain of 20% and stress of 1.7 GPa, demonstrates a substantial advantage as an elastocaloric refrigerant. At room temperature, a large adiabatic temperature change (ΔTad) of −6.7 K is detected, which is comparable to the highest value reported in the Ti-based alloys. A high elastocaloric cyclic stability, with almost no degradation of ΔTad after 4000 cycles, is observed. Furthermore, the sizeable elastocaloric effect can be steadily expanded from 255 K to 395 K with a temperature window of as large as 140 K. A maximum ΔTad of −7.9 K appears at 355 K. The present work demonstrates a promising potential of TiZrNbAl as a low critical stress and low hysteresis elastocaloric refrigerant.

Funder

National Key R&D Program of China

National Training Program of Innovation and Entrepreneurship for Undergraduates

National Natural Science Foundation of China

Science and Technology Plan Project of Liaoning Provincial—Applied Basic Research Program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3