Benefits of Femtosecond Laser 40 MHz Burst Mode for Li-Ion Battery Electrode Structuring

Author:

Sikora Aurélien1,Gemini Laura1,Faucon Marc1,Mincuzzi Girolamo1

Affiliation:

1. Alphanov, Aquitaine Institute of Optics, Rue F. Mitterrand, 33400 Talence, France

Abstract

In Li-ion batteries, ion diffusion kinetics represent a limitation to combine high capacity and a fast charging rate. To bypass this, textured electrodes have been demonstrated to increase the active surface, decrease the material tortuosity and accelerate the electrolyte wetting. Amongst the structuring technologies, ultrashort pulse laser processing may represent the key option enabling, at the same time, high precision, negligible material deterioration and high throughput. Here, we report a study on the structuring of electrodes with both holes and grooves reaching the metallic collector. Electrochemical models emphasize the importance of hole and line dimensions for the performances of the cell. We demonstrate that we can control the hole and line width by adjusting the applied fluence and the repetition rate. In addition, results show that it is possible to drill 65 µm-deep and ~15 µm-wide holes in nearly 100 µs resulting in up to 10,000 holes/s. To further reduce the takt time, bursts of 40 MHz pulses were also investigated. We show that bursts can reduce the takt time by a factor that increases with the average power and the burst length. Moreover, at comparable fluence, we show that bursts can shorten the process more than theoretically expected.

Funder

European Commission

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on Picosecond Synchronization Control Between Synchrotron Radiation X-ray Pulse and Femtosecond Laser Pulse on SSRF;Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment;2024-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3