Leaf Area Index Estimation Algorithm for GF-5 Hyperspectral Data Based on Different Feature Selection and Machine Learning Methods

Author:

Chen Zhulin,Jia KunORCID,Xiao Chenchao,Wei Dandan,Zhao Xiang,Lan Jinhui,Wei Xiangqin,Yao Yunjun,Wang Bing,Sun Yuan,Wang Lei

Abstract

Leaf area index (LAI) is an essential vegetation parameter that represents the light energy utilization and vegetation canopy structure. As the only in-operation hyperspectral satellite launched by China, GF-5 is potentially useful for accurate LAI estimation. However, there is no research focus on evaluating GF-5 data for LAI estimation. Hyperspectral remote sensing data contains abundant information about the reflective characteristics of vegetation canopies, but these abound data also easily result in a dimensionality curse. Therefore, feature selection (FS) is necessary to reduce data redundancy to achieve more reliable estimations. Currently, machine learning (ML) algorithms have been widely used for FS. Moreover, the same ML algorithm is usually conducted for both FS and regression in LAI estimation. However, no evidence suggests that this is the optimal solution. Therefore, this study focuses on evaluating the capacity of GF-5 spectral reflectance for estimating LAI and the performances of different combination of FS and ML algorithms. Firstly, the PROSAIL model, which coupled leaf optical properties model PROSPECT and the scattering by arbitrarily inclined leaves (SAIL) model, was used to generate simulated GF-5 reflectance data under different vegetation and soil conditions, and then three FS methods, including random forest (RF), K-means clustering (K-means) and mean impact value (MIV), and three ML algorithms, including random forest regression (RFR), back propagation neural network (BPNN) and K-nearest neighbor (KNN) were used to develop nine LAI estimation models. The FS process was conducted twice using different strategies: Firstly, three FS methods were conducted to search the lowest dimension number, which maintained the estimation accuracy of all bands. Then, the sequential backward selection (SBS) method was used to eliminate the bands having minimal impact on LAI estimation accuracy. Finally, three best estimation models were selected and evaluated using reference LAI. The results showed that although the RF_RFR model (RF used for feature selection and RFR used for regression) achieved reliable LAI estimates (coefficient of determination (R2) = 0.828, root mean square error (RMSE) = 0.839), the poor performance (R2 = 0.763, RMSE = 0.987) of the MIV_BPNN model (MIV used for feature selection and BPNN used for regression) suggested using feature selection and regression conducted by the same ML algorithm could not always ensure an optimal estimation. Moreover, RF selection preserved the most informative bands for LAI estimation so that each ML regression method could achieve satisfactory estimation results. Finally, the results indicated that the RF_KNN model (RF used as feature selection and KNN used for regression) with seven GF-5 spectral band reflectance achieved the better estimation results than others when validated by simulated data (R2 = 0.834, RMSE = 0.824) and actual reference LAI (R2 = 0.659, RMSE = 0.697).

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3