Maximizing Temporal Correlations in Long-Term Global Satellite Soil Moisture Data-Merging

Author:

Hagan Daniel Fiifi TawiaORCID,Wang GuojieORCID,Kim SeokhyeonORCID,Parinussa Robert M.,Liu Yi,Ullah WaheedORCID,Bhatti Asher Samuel,Ma Xiaowen,Jiang Tong,Su Buda

Abstract

In this study, an existing combination approach that maximizes temporal correlations is used to combine six passive microwave satellite soil moisture products from 1998 to 2015 to assess its added value in long-term applications. Five of the products used are included in existing merging schemes such as the European Space Agency’s essential climate variable soil moisture (ECV) program. These include the Special Sensor Microwave Imagers (SSM/I), the Tropical Rainfall Measuring Mission (TRMM/TMI), the Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) sensor on the National Aeronautics and Space Administration’s (NASA) Aqua satellite, the WindSAT radiometer, onboard the Coriolis satellite and the soil moisture retrievals from the Advanced Microwave Scanning Radiometer 2 (AMSR2) sensor onboard the Global Change Observation Mission on Water (GCOM-W). The sixth, the microwave radiometer imager (MWRI) onboard China’s Fengyun-3B (FY3B) satellite, is absent in the ECV scheme. Here, the normalized soil moisture products are merged based on their availability within the study period. Evaluation of the merged product demonstrated that the correlations and unbiased root mean square differences were improved over the whole period. Compared to ECV, the merged product from this scheme performed better over dense and sparsely vegetated regions. Additionally, the trends in the parent inputs are preserved in the merged data. Further analysis of FY3B’s contribution to the merging scheme showed that it is as dependable as the widely used AMSR2, as it contributed significantly to the improvements in the merged product.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3